E12

При перемещении заряда в однородном электрическом поле с напряженностью Е из точки 1 в точку 2 любую траекторию можно представить в виде ломанной линии со сколь угодно малыми ступеньками параллельными линиям напряженности и перпендикулярными им. В направлении, перпендикулярном линиям напряженности, работу электрическое поле не совершает.  

A1

Поле, в котором работа сил не зависит от формы траектории, а по замкнутой траектории равна нулю, называется потенциальным.

Потенциальная энергия заряда в электрическом поле

W

Работа электрического поля по перемещению заряда из точки 1 в точку 2 равна разности потенциальных энергий в этих точках.A12

 

Энергетическая характеристика электрического поля

Потенциал – это физическая величина, равная отношению потенциальной энергии заряда в электрическом поле к этому заряду

 phi

Тогда работу электрического поля можно выразить через разность потенциалов:

Aphi

Потенциал электрического поля точечного заряда на расстоянии от него

phi1

Связь потенциала и напряженности:

Ephi

Поверхности равного потенциала (эквипотенциальные поверхности) – геометрическое место точек, имеющих одинаковый потенциал.

 equi

 

Точечный заряд Сфера Шар Плоскость
 Edot

 

Esph 

Shar Eplosk
 E1r  E2r Esph  E3r
 E1rp  E2rp E2rp  E3rp

 phi1

Edot1

 Ep2

При r < R

Eshar

при  r >= R

Edot1

 Phisigma

Esigma

 

Принцип суперпозиции полей: если в точке пространства существует несколько электрических полей, то потенциал суммарного поля в данной точке равен алгебраической сумме потенциалов всех полей (с учетом знака):

 super

arrowrleft                                       arrowright