Уравнение состояния идеального газа определяет связь температуры, объема и давления тел.

  • Позволяет определить одну извеличин, характеризующих состояние газа, по двум другим (используется в термометрах);
  • Определить, как протекают процессы при определенных внешних условиях;
  • Определить, как меняется состояние системы, если она совершает работу или получает тепло от внешних тел.

 

Уравнение Менделеева-Клапейрона (уравнение состояния идеального газа)

 26

универсальная газовая постояннаяR = kNA

Уравнение Клапейрона (объединенный газовый закон)

pVT

Частными случаями уравнения являются газовые законы, описывающие изопроцессы в идеальных газах, т.е. процессы, при которых один из макропараметров (T, P, V) в закрытой изолированной системе постоянный.

Газовые законы

Название Формулировка Графики

Закон Бойля-Мариотта– изотермический процесс

27

Для данной массы газа произведение давления на объем постоянно, если температура не меняется

30

  

Закон Гей-Люссака– изобарный процесс

28

Для данной массы газа отношение объема к температуре постоянно, если давление не меняется

31

    

Закон Шарля– 
изобарный процесс

29

Для данной массы газа отношение давления к температуре постоянно, если объем не меняется

32

  


 arrowrleft                                     arrowright

Температура характеризует состояние теплового равновесия термодинамической системы. Все тела, находящиеся друг с другом в состоянии теплового равновесия, имеют одну и ту же температуру.

Температура – степень нагретости тела. Измерение температуры термометрами основано на изменении какого-либо физического параметра при нагревании, например, расширении тел при нагревании или изменении электрического сопротивления.

Все тела при нагревании расширяются, это свойство можно использовать при создании термометров, термометрическим веществом которых является не только жидкость, но и газ, и твердое тело.

ab4 4748 

ae5073dc25dd68ff6a91cf82a404b109

 

Шкалы температур

Шкала Реомюра

Предложена в 1730 году Р. А. Реомюром, который описал изобретённый им спиртовой термометр.

Единица — градус Реомюра (°R), 1 °R равен 1/80 части температурного интервала между опорными точками — температурой таяния льда (0 °R) и кипения воды (80 °R)

1 °R = 1,25 °C.

Шкала Фаренгейта

В этой шкале на 100 градусов раздёлен интервал от температуры самой холодной зимы в городе, где жил Фаренгейт в Голландии, до температуры человеческого тела. Ноль градусов Цельсия — это 32 градуса Фаренгейта, а градус Фаренгейта равен 5/9 градуса Цельсия.

Температура по шкале Фаренгейта связана с температурой по шкале Цельсия (t °С) соотношением t °С = 5/9 (t °F - 32), 1 °F = 5/9 °С. Предложена Г. Фаренгейтом в 1724.

Шкала Цельсия

В быту используется шкала Цельсия, в которой за 0 принимают точку замерзания воды, а за 100° точку кипения воды при атмосферном давлении. Поскольку температура замерзания и кипения воды недостаточно хорошо определена, в настоящее время шкалу Цельсия определяют через шкалу Кельвина: градус Цельсия равен кельвину, абсолютный ноль принимается за −273,15 °C.

Шкала Кельвина

В термодинамике используется шкала Кельвина, в которой температура отсчитывается от абсолютного нуля (состояние, соответствующее минимальной теоретически возможной внутренней энергии тела), а один кельвин равен 1/273.16 расстояния от абсолютного нуля до тройной точки воды (0,01 °С, состояния, при котором лёд, вода и водяной пар находятся в равновесии).

T = t0C + 273

 500307075

 

Температура характеризует скорость движения молекул, а значит, и создаваемое ими давление. При понижении температуры скорость теплового движения молекул уменьшается. Существует такое значение температуры, при котором всякое тепловое движение прекращается. Эта температура называется абсолютный ноль или точка нулевого давления.

3 2 5

Тепловое равновесие – состояние термодинамической системы, при котором все макроскопические параметры сколь угодно долго остаются неизменными.

Температура является мерой кинетической энергии хаотического движения молекул в макроскопических телах.

Энергетическая температура

Если провести опыт, положив несколько сосудов с разными газами в лед, то можно заметить, что хотя разные характеристики каждого газа, но их отношение одинаково:

pVN

Term

Поскольку данное соотношение зависит только от температуры и имеет размерность энергии, его называют энергетической температурой:

kT

k - коэффициент пропорциональности между энергетической и абсолютной температурой, постоянная Больцмана

KJK

Закон Авогадро следует из определения энергетической температуры: В равных объемах любых газов, взятых при одной и той же температуре и при одинаковом давлении, содержится одно и то же число молекул.

Из закона Авогадро вытекает важное следствие: моль любого газа при нормальных условиях (0ºС (273 К) и давлении 101,3 кПа) занимает объем, равный 22,4 л. В этом объеме содержится 6,02·1023 молекул газа (число Авогадро).

FG08 13

Опыт Штерна по определению скоростей теплового движения атомов, проведённый немецким физиком Отто Штерном в 1920 году. Опыт являлся одним из первых практических доказательств состоятельности молекулярно-кинетической теории строения вещества. В нём были непосредственно измерены скорости теплового движения молекул и подтверждено наличие распределения молекул газов по скоростям.

07230a  9130 html 45d4726e

 

Среднеквадратичная скорость теплового движения атомов (молекул)

36                            37

Средняя длина свободного пробега молекул

Молекулы газа, находясь в тепловом движении, непрерывно сталкиваются друг с другом. Между двумя последовательными соударениями молекулы, двигаясь равномерно и прямолинейно, проходят некоторые расстояния, называемые длинами свободных пробегов λ. Эти расстояния могут быть самыми разными, то есть λ - случайная величина. Поэтому вводят понятие средней длины свободного пробега <λ>, под которой понимают среднее расстояние, проходимое молекулой между двумя последовательными столкновениями со средней арифметической скоростью <v>.

Lmid

Будем считать, что молекулы газа представляют собой шарики диаметром d. Минимальное расстояние, на которое могут сблизиться при столкновении центры двух молекул, также равно d. Это расстояние называется  эффективным диаметром молекулы. Круг радиусом d с центром в центре рассматриваемой молекулы площадью πd2 называется эффективным сечением молекулы.

sigma shem

Если молекула за некоторый промежуток времени Δt претерпевает в среднем <Z> столкновений, то средняя длина ее свободного пробега равна

LZtv5 

Предположим для простоты, что движется только одна рассматриваемая молекула, а остальные неподвижны. Кроме того, ломаную траекторию молекулы мысленно спрямим и будем считать движение молекул условно прямолинейным. Тогда за время Δt эта молекула претерпит <Z> столкновений, равное числу молекул, центры которых лежат в прямом цилиндре с основанием, равным эффективному сечению молекулы, и высотой, равной пути, проходимому молекулой за это время, то есть <vt:

LZtv1,

где n - концентрация молекул, V - объем цилиндра.

Тогда получим

LZtv2.

При учете движения всех молекул среднее число столкновений, испытываемых одной молекулой за некоторый промежуток времени Δt, равно

LZtv3

Получим выражение для средней длины свободного пробега молекулы:

LZtv4

 arrowrleft                                     arrowright

Видимый свет - это электромагнитные волны с длиной волны от 400 нм до 750 нм.

Tab 01

Электромагнитные волны излучаются электронами вещества при их ускоренном движении. Для того, чтобы атом начал излучать, ему необходимо передать энергию. В этом случае электрон "возбуждается", то есть переходит на более высокую орбиту (нестационарное или возбужденное состояние). В этом состоянии электрон не может находиться долго, он самопроизвольно переходит в состояние с более низкой энергией, излучая фотон.

img iKBM2e

Для того, чтобы атом продолжал излучать, необходим приток энергии извне. В зависимости от энергии возбуждения излучение делят на несколько видов.

Тепловое излучение

Потери атомами энергии на излучение света компенсируются за счет энергии теплового движения атомом (или молекул) излучающего тела. Тепловое излучение это излучение нагретых тел. Чем выше температура тема, тем быстрее движутся в нем атомы. При столкновении быстрых атомов (или молекул) друг с другом часть их кинетической энергии идет на возбуждение атомов, которые затем излучают свет и переходят в невозбуждепное состояние.

При различной температуре максимум мощности излучения приходится на различные диапазоны длин волн. При температуре поверхности Солнца максимум находится в видимой части спектра.

f18 02 planck black body1

Тепловыми источниками излучения являются, например, Солнце и обычная лампа накаливания. Лампа - это малоэкономичный источник света. Лишь около 12% всей энергии, выделяемой в нити лампы электрическим  током, преобразуется в энергию света. Наконец, тепловым источником света является также пламя. Крупинки сажи (не успевшие сгореть частицы топлива) раскаляются за счет энергии, выделяющейся при сгорании топлива, и испускают свет.

50853678840aa096793c31                         402944690               001

Электролюминесценция

При разряде в газах электрическое поле сообщает электронам большую кинетическую энергию. Быстрые электроны испытывают неупругие соударения с атомами. Часть кинетической энергии электронов идет на возбуждение атомов. Возбужденные атомы отдают энергию в виде световых волн. В результате этого разряд в газе сопровождается свечением.

Glow discharge regions

Северное сияние — это проявление электролюминесценции. Потоки заряженных частиц, испускаемых Солнцем, захватываются магнитным полем Земли. Они возбуждают у магнитных полюсов Земли атомы верхних слоев атмосферы, из-за чего эти слои светятся. Явление электролюминесценции используется в трубках для рекламных надписей, в устройстве полупроводниковых светодиодов.

Svetodiodnye tehnologii diod.gif 6a00d83451dceb69e2010536a737d7970b 600wi

Катодолюминесценция

Свечение твердых тел, вызванное бомбардировкой их электронами, называют катодолюминесценцией. Благодаря катодолюминесценции светятся экраны электронно-лучевых трубок телевизора.

1446844378480b0e0e1427f

Хемилюминесценция

При некоторых химических реакциях, идущих с выделением энергии, часть этой энергии непосредственно расходуется на излучение света. Источник света остается холодным (он имеет температуру окружающей среды). Это явление называется хемилюминесценцией. 

af6f72dd5114b74b75c866505b3adfe4 i 28  nyan 02 pic4 zoom 1000x1000 4853

Летом в лесу можно ночью увидеть насекомое — светлячка. На теле у него «горит» маленький зеленый «фонарик». Светящееся пятнышко на его спинке имеет почти ту же температуру, что и окружающий воздух. Свойством светиться обладают и другие живые организмы: бактерии, насекомые, многие рыбы, обитающие на большой глубине. Нередко светятся в темноте кусочки гниющего дерева.

Фотолюминесценция

Падающий на вещество свет частично отражается и частично поглощается. Энергия поглощаемого света в большинстве случаев вызывает лишь нагревание тел. Однако некоторые тела сами начинают светиться непосредственно под действием падающего на них излучения. Это и есть фотолюминесценция. Свет возбуждает атомы вещества (увеличивает их внутреннюю энергию), и после этого они высвечиваются сами.

na foto tolko odin iz primerov ispolzovaniya svetyaschihsya krasok v bytu daleko ne samyy rekomendue 5768567

Например, светящиеся краски, которыми покрывают елочные игрушки, излучают свет после их облучения. Явление фотолюминнесценции широко используется в лампах дневного света. Советский физик С. И. Вавилов предложил покрывать внутреннюю поверхность разрядной трубки веществами, способными ярко светиться под действием коротковолнового излучения газового разряда.

620x865

Вавилов Сергей Иванович (1891 —1951) — советский физик, государственный и общественный деятель, президент АН СССР в 1945—1951 гг. Основные научные труды посвящены физической оптике, и в первую очередь фотолюминесценции. Под его руководством была разработана технология изготовления ламп дневного света и развит метод люминесцентного анализа химического состава веществ. Под его руководством П. А. Черенков открыл в 1934 г. излучение света электронами, движущимися в среде со скоростью, превышающей скорость света в этой среде.

Черенковское излучение (или излучение Вавилова-Черенкова) возникает при движении заряженной частицы в прозрачной среде со скоростью v большей скорости света в этой среде, т.е. при v > c/n, где с – скорость света в вакууме, а n – показатель преломления среды. Черенковское излучение является совместным излучением множества атомов среды, расположенных вдоль траектории движения частицы и поляризованных её электрическим полем. Таким образом, непосредственно излучает не частица, а среда, в которой движется частица. Это излучение можно наблюдать визуально и регистрировать с помощью фотоплёнки или фотоэлектронного умножителя (ФЭУ), преобразующего энергию излучения в электрический сигнал.

im099p01 1 

 Cherenkov radiationCherenkov radiation1

 cherenkov light generated in the atmosphere by cosmic rays

arrow left                                     arrow right

rId33

Ни один из источников не дает монохроматического света, т.е. света строго определенной длины волны. В этом можно убедиться на опытах по разложению света в спектр с помощью призмы, а также опыты по интерференции и дифракции.

Disp

Та энергия, которую несет с собой свет от источника, определенным образом распределена по волнам всех длин, входящим в состав светового пучка. 

Для характеристики распределения излучения по частотам нужно ввести новую величину: интенсивность, приходящуюся на единичный интервал частот. Эту величину называют спектральной плотностью интенсивности излучения.

Спектральную плотность потока излучения можно найти экспериментально. Для этого надо с помощью призмы получить спектр излучения, например, электрической дуги, и измерить плотность потока излучения, приходящегося на небольшие спектральные интервалы шириной Δν.

Полагаться на глаз при оценке распределения энергии нельзя. Глаз обладает избирательной чувствительностью к свету: максимум его чувствительности лежит в желто-зеленой области спектра. Лучше всего воспользоваться свойством черного тела почти полностью поглощать свет всех длин волн. При этом энергия излучения (т.е. света) вызывает нагревание тела. Поэтому достаточно измерить температуру тела и по ней судить о количестве поглощенной в единицу времени энергии.

 I v

Спектры излучения

Спектральный состав излучения атомов различных веществ весьма разнообразен. Тем не менее, все спектры можно разделить на три сильно отличающихся друг от друга типа.

Сплошной (непрерывный) спектр

Накаленные твердые и жидкие тела и газы (при большом давлении) испускают свет, разложение которого дает сплошной спектр, в котором спектральные цвета непрерывно переходят один в другой. Характер непрерывного спектра и сам факт его существования опре­деляются не только свойствами отдельных излучающих атомов, но и вза­имодействием атомов друг с другом. Сплошные спектры одинаковы для разных веществ, и поэтому их нельзя использовать для определения состава вещества.

image007

Линейчатый (атомный) спектр

Возбужденные атомы разреженных газов или паров испускают свет, разложение которого дает линейчатый спектр,состоящий из отдельных цветных линий. Каждый химический элемент имеет характерный для него линейчатый спектр. Атомы таких веществ не взаимодействуют друг с другом и излучают свет только определенных длин волн. Изолированные атомы данного химического элемента излучают строго определенные длины волн. Это позволяет по спектральным линиям судить о химическом составе источника света.

image007 1

Обычно для наблюдения линейчатых спектров используют свечение паров вещества в пламени или свечение газового разряда в трубке, наполненной исследуемым газом. При увеличении плотности атомарного газа отдельные спектральные линии расширяются и, при очень большой плотности газа, когда взаимодействие атомов становится существенным, эти линии перекрывают друг друга, образуя непрерывный спектр.

Na

Молекулярный (полосатый) спектр

Спектр молекулы состоит из большого числа отдельных линий, сливающихся в полосы, четкие с одного края и размытые с другого. В отличие от линейчатых спектров полосатые спектры создаются не атомами, а молекулами, не связанными или слабо связанными друг с другом. Серии очень близких линий группируются на отдельных участках спектра и заполняют целые полосы.

0299067789 
 Спектр угольной дуги (полосы молекул CN и C2)
 0211135261
 Спектр испускания паров молекулы йода
 N2
 Спектр молекулы Н2

В 1860 г. немецкие ученые Г. Кирхгоф и Р. Бунзен, изучая спектры металлов, установили следующие факты:

1) каждый металл имеет свой спектр;

2) спектр каждого металла строго постоянен;

3) введение в пламя горелки любой соли одного и того же металла все­гда приводит к появлению одинакового спектра;

4) при внесении в пламя смеси солей нескольких металлов в спектре одновременно появляются все их линии;

5) яркость спектральных линий зависит от концентрации элемента в данном веществе.

Спектры поглощения

Если белый свет от источника, дающей сплошной спектр, пропускается через пары исследуемого вещества и затем разлагается в спектр, то на фоне сплошного спектра наблюдаются темные линии поглощения в тех же самых местах, где находились бы линии спектра испускания паров исследуемого элемента. Такие спектры получили название атомных спектров поглощения.

main qimg 59091570ebf8fd90ff053222e8b4b29a c

Все вещества, атомы которых находятся в возбужденном состоянии, излучают световые волны, энергия которых определенным образом распределена по длинам волн. Поглощение света веществом также зависит от длины волны. Атомы поглощают излучение лишь тех длин волн, которые они могут испускать при данной температуре.

Spektry poglosenia

0004 004 Spektroskop

Спектральный анализ

Спектральным анализом называется метод изучения химического состава вещества, основанный на исследовании его спектров. Отдельные линии в спектрах различных элементов могут совпадать, но в целом спектр каждого элемента является его индивидуальной характеристикой.

Спектральный анализ сыграл большую роль в науке. Например, в спектре Солнца (1814) были открыты фраунгоферовы темные линии, происхождение которых объясняется следующим образом. Солнце, являясь раскаленным газовым шаром (Т ~ 6000 °С), испускает сплошной спектр. Солнечные лучи проходят через атмосферу Солнца (солнечную корону, температура которой ~2000— 3000 °С. Корона поглощает из сплошного спектра излучение определенной частоты, а на Земле регистрируется солнечный спектр поглощения, по которому можно определить, какие химические элементы присутствуют в короне Солнца. По спектрам поглощения на Солнце были обнаружены все земные элементы, а также неизвестный ранее элемент, который назвали гелий. Через 26 лет (1894) открыли гелий на Земле. Благодаря спектральному анализу на Земле было открыто еще 25 химических элементов.

1c6d27a73443b05b3de40bc49186d18b

Фраунгоферовы линии дают информацию не только о химическом составе звезды, но и о ее температуре и давлении на поверхности. Более того, спектральный анализ Солнца и звезд показал, что входящие в их состав химические элементы имеются и на Земле, т.е. вещество Вселенной состоит из одного и того же набора элементов.

Спектральные аппараты

Спектроскопом называется прибор, с помощью которого визуально исследуется спектральный состав света, испускаемого некоторым источником. Если регистрация спектра происходит на фотопластинке, то прибор называется спектрографом.

Для точного исследования спектров такие простые приспособления, как узкая щель, ограничивающая световой пучок, и призма, уже недостаточны. Необходимы приборы, дающие четкий спектр, т.е. приборы, хорошо разделяющие волны различной длины и не допускающие перекрытия отдельных участков спектра. Такие приборы называют спектральными аппаратами. Чаще всего основной частью спектрального аппарата является призма или дифракционная решетка.

spectrographschematic        18099 19 04 14 12 34 55

Рассмотрим схему устройства призменного спектрального аппарата. Исследуемое излучение поступает вначале в часть прибора, называемую коллиматором. Коллиматор представляет собой трубу, на одном конце которой имеется ширма с узкой щелью, а на другом - собирающая линза. Щель находится на фокусном расстоянии от линзы. Поэтому расходящийся световой пучок, попадающий на линзу из щели, выходит из нее параллельным пучком и падает на призму.

Так как разным частотам соответствуют различные показатели преломления, то из призмы выходят параллельные пучки, не совпадающие по направлению. Они падают на линзу. На фокусном расстоянии этой линзы располагается экран - матовое стекло или фотопластинка. Линза фокусирует параллельные пучки лучей на экране, и вместо одного изображения щели получается целый ряд изображений. Каждой частоте (узкому спектральному интервалу) соответствует свое изображение. Все эти изображения вместе и образуют спектр.

Описанный прибор называется спектрографом. Если вместо второй линзы и экрана используется зрительная труба для визуального наблюдения спектров, то прибор называется спектроскопом

Применение спектрального анализа

Линейчатые спектры играют особо важную роль, потому что их структура прямо связана со строением атома. Ведь эти спектры создаются атомами, не испытывающими внешних воздействий. Состав сложных, главным образом органических смесей анализируется по их молекулярным спектрам.

С помощью спектрального анализа можно обнаружить данный элемент в составе сложного вещества, если даже его масса не превышает 10-10г. Линии, присущие данному элементу, позволяют качественно судить о его наличии. Яркость линий дает возможность (при соблюдении стандартных условий возбуждения) количественно судить о наличии того или иного элемента.

Спектральный анализ можно проводить и по спектрам поглощения. В астрофизике по спектрам можно определить многие физические ха­рактеристики объектов: температуру, давление, скорость движения, маг­нитную индукцию и др. с помощью спектрального анализа определяют химический состав руд и минералов.

Основные направления применения спектрального анализа таковы: физико-химические исследования; машиностроение, металлургия; атомная индустрия; астрономия, астрофизика; криминалистика.

Современные технологии создания новейших строительных материалов (металлопластиковые, пластиковые) непосредственно взаимосвязаны с такими фундаментальными науками как химия, физика. Данные науки используют современные методы исследования веществ. Поэтому спектральный анализ можно применять для определения химического состав состава строительных материалов по их спектрам.

 zn aiasmpexperte0o90119yspectrumrnps

arrow left                                     arrow right