В 1920 г. Резерфорд высказал гипотезу о существовании в составе ядер жестко связанной компактной протон-электронной пары, представляющей собой электрически нейтральное образование – частицу с массой, приблизительно равной массе протона. Он даже придумал название этой гипотетической частице – нейтрон. Это была очень красивая, но, как выяснилось впоследствии, ошибочная идея. Электрон не может входить в состав ядра. Квантово-механический расчет на основании соотношения неопределенностей показывает, что электрон, локализованный в ядре, т.е. области размером R ≈ 10−13 см, должен обладать колоссальной кинетической энергией, на много порядков превосходящей энергию связи ядер в расчете на одну частицу. Идея о существовании тяжелой нейтральной частицы казалась Резерфорду настолько привлекательной, что он незамедлительно предложил группе своих учеников во главе с Дж. Чедвиком заняться поиском такой частицы. Через 12 лет в 1932 г. Чедвик экспериментально исследовал излучение, возникающее при облучении бериллия α-частицами, и обнаружил, что это излучение представляет собой поток нейтральных частиц с массой, примерно равной массе протона. Так был открыт нейтрон.
При бомбардировке бериллия α-частицами, испускаемыми радиоактивным полонием, возникает сильное проникающее излучение, способное преодолеть такую преграду, как слой свинца толщиной в 10−20 см. Это излучение почти одновременно с Чедвиком наблюдали супруги Жолио-Кюри Ирен и Фредерик (Ирен – дочь Марии и Пьера Кюри), но они предположили, что это γ-лучи большой энергии. Они обнаружили, что если на пути излучения бериллия поставить парафиновую пластину, то ионизирующая способность этого излучения резко возрастает. Они доказали, что излучение бериллия выбивает из парафина протоны, которые в большом количестве имеются в этом водородосодержащем веществе. По длине свободного пробега протонов в воздухе они оценили энергию γ-квантов, способных при столкновении сообщить протонам необходимую скорость. Она оказалась огромной – порядка 50 МэВ.Дж.
Чедвик в своих опытах наблюдал в камере Вильсона треки ядер азота, испытавших столкновение с бериллиевым излучением. На основании этих опытов он сделал оценку энергии γ-кванта, способного сообщить ядрам азота наблюдаемую в эксперименте скорость. Она оказалась равной 100-150 МэВ. Такой огромной энергией не могли обладать γ-кванты, испущенные бериллием. На этом основании Чедвик заключил, что из бериллия под действием α-частиц вылетают не безмассовые γ-кванты, а достаточно тяжелые частицы. Поскольку эти частицы обладали большой проникающей способностью и непосредственно не ионизировали газ в счетчике Гейгера, следовательно, они были электронейтральны. Так было доказано существование нейтрона – частицы, предсказанной Резерфордом более чем за 10 лет до опытов Чедвика.
Состав ядра атома
Атомное ядро — это центральная часть атома, состоящая из протонов и нейтронов (которые вместе называются нуклонами).
Ядро было открыто Э. Резерфордом в 1911 г. при исследовании прохождения α-частиц через вещество. Оказалось, что почти вся масса атома (99,95%) сосредоточена в ядре. Размер атомного ядра имеет порядок величины 10-13-10-12 см, что в 10 000 раз меньше размера электронной оболочки.
Положительный заряд протона в точности равен элементарному заряду e = 1,60217733·10–19 Кл, то есть равен по модулю отрицательному заряду электрона. В настоящее время равенство зарядов протона и электрона проверено с точностью 10–22. Такое совпадение зарядов двух непохожих друг на друга частиц вызывает удивление и остается одной из фундаментальных загадок современной физики.
Масса протона, по современным измерениям, равна mp = 1,67262∙10–27 кг. В ядерной физике массу частицы часто выражают в атомных единицах массы (а. е. м.), равной 1/12 массы атома углерода с массовым числом 12:
1 а. е. м. = 1,66057·10–27 кг
Следовательно, mp = 1,007276 а. е. м. Во многих случаях массу частицы удобно выражать в эквивалентных значениях энергии в соответствии с формулой E = mc2. Так как 1 эВ = 1,60218·10–19 Дж, в энергетических единицах масса протона равна 938,272331 МэВ.
Нейтрон – это элементарная частица. Ее не следует представлять в виде компактной протон-электронной пары, как первоначально предполагал Резерфорд.
По современным измерениям, масса нейтрона mn = 1,67493∙10–27 кг = 1,008665 а. е. м. В энергетических единицах масса нейтрона равна 939,56563 МэВ. Масса нейтрона приблизительно на две электронные массы превосходит массу протона.
Атомные ядра являются связанной системой взаимодействующих протонов и нейтронов. В атомном ядре проявляются три типа взаимодействий.
- Сильные взаимодействия между нуклонами приводят к образованию связанного состояния A нуклонов.
- Электромагнитные взаимодействия приводят с одной стороны к расталкиванию между протонами, что ослабляет связь в атомном ядре, с другой стороны взаимодействие магнитных моментов нуклонов приводит к большому разнообразию ядерных состояний.
- Слабое взаимодействие между нуклонами приводит к взаимным превращениям нейтронов и протонов в атомном ядре − явлению β-распада атомных ядер.
Существует несколько моделей ядерной структуры, которые на первый взгляд кажутся противоречащими друг другу. Однако эти модели вовсе не исключают друг друга, а касаются различных свойств ядра и поэтому дополняют друг друга. Каждая модель ядра основывается на экспериментальных фактах и позволяет объяснить некоторые их выделенные свойства.
Протонно-нейтронная модель
Эту модель предложили в 1932 г. советские физики Д. Иваненко, Е. Гапон и немецкий физик В. Гейзенберг. Согласно этой модели ядро атома состоит из протонов и нейтронов, за исключением ядра водорода, которое состоит из одного протона. В этой модели было непонятно, каким образом достигается физическое единство атома на уровне его ядра и электронных оболочек: в ядре на чрезвычайно малом расстоянии находятся одинаково заряженные протоны, которые должны взаимно отталкиваться друг от друга, но этого не наблюдается. Следовательно, этому процессу отталкивания должна препятствовать сила притяжения между протонами, поскольку протоны имеют массу, но масса их чрезвычайно мала.
Модель жидкой капли. Одной из первых моделей атомного ядра была модель жидкой капли, в которой атомное ядро рассматривалось как сферическая капля несжимаемой ядерной жидкости радиуса R ≈ 1,3 Фм. Точные измерения показали, что вес ядра не равен сумме весов, входящих в состав ядра нуклонов, а меньше этой величины на несколько десятых процента. Разность этих величин – энергия связи ядра – энергия, необходимая для разделения ядра на отдельные нуклоны.
Капельная модель дает правильное представление о массе и энергии связи ядра. На основе капельной модели можно рассчитать энергии распадов атомных ядер, получить зависимость между числом протонов и нейтронов в стабильных ядрах, грубо оценить области существования атомных ядер. Капельная модель ядра объяснила, почему максимум стабильности атомных ядер находится в районе 56Fe.
Модель оболочек. Модель оболочек основывается на том, что свойства ядер, подобно свойствам атомов, обнаруживают определенную периодичность при изменении чисел протонов и нейтронов. На фоне довольно плавной зависимости энергии связи ядер от массового числа A встречаются ядра, в которых энергия связи больше чем в соседних ядрах. В этих ядрах также увеличена энергия отделения нуклона. Они имеют повышенную распространенность в природе. Такие ядра получили название магических, а числа протонов и нуклонов в них, соответствующие повышенной стабильности – магических чисел.
Магические числа 2, 8, 20, 28, 50, 82, 126.
Ядра с магическим числом нейтронов имеют необыкновенно малое сечение поглощения нейтронов.
В 1949 г. М. Гепперт-Майер и Дж. Иенсен сделали решающий шаг в становлении оболочечной модели ядра. Они показали, что в ядерном потенциале необходимо учитывать спин-орбитальное взаимодействие нуклона – взаимодействие спина нуклона с его орбитальным моментом количества движения. Благодаря этому им удалось воспроизвести все магические числа. Они указали также на важность учета принципа Паули при рассмотрении движения нуклонов в ядре.
Кластеры в лёгких ядрах
Несмотря на то, что в простейших моделях атомное ядро обычно рассматривается как система, состоящая из отдельных нуклонов, в результате взаимодействия между нуклонами в ядре образуются компактные структуры, состоящие из двух или большего числа частиц, которые могут возникать внутри атомного ядра. Кластерная структура особенно отчетливо проявляется в лёгких ядрах. Кластерная структура атомных ядер проявляется в процессах α-распада, в различных ядерных реакциях.