Между составляющими ядро нуклонами действуют ядерные силы, значительно превышающие кулоновские силы отталкивания между протонами. С точки зрения полевой теории элементарных частиц ядерные силы, в основном, являются силами взаимодействия магнитных полей нуклонов в ближней зоне. На больших расстояниях потенциальная энергия такого взаимодействия убывает по закону 1/r3 - этим объясняется их короткодействующий характер. На расстоянии (3 ∙10-13 см) ядерные силы становятся доминирующими, а на расстояниях менее (9,1 ∙10-14 см) они превращаются в еще более мощные силы отталкивания.
Ядерные силы являются короткодействующимисилами. Они проявляются лишь на весьма малых расстояниях между нуклонами в ядре порядка 10–15 м. Длина (1,5 – 2,2)·10–15 м называется радиусом действия ядерных сил.
Ядерные силы обнаруживают зарядовую независимость: притяжение между двумя нуклонами одинаково независимо от зарядового состояния нуклонов – протонного или нейтронного. Зарядовая независимость ядерных сил видна из сравнения энергий связи зеркальных ядер. Так называются ядра, в которых одинаково общее число нуклонов, но число протонов в одном равно числу нейтронов другом. Например, ядра гелия и тяжелого водорода – трития . Энергии связи этих ядер составляют 7,72 МэВ и 8,49 МэВ.
Разность энергий связи ядер, равная 0,77 МэВ, соответствует энергии кулоновского отталкивания двух протонов в ядре .
Ядерные силы обладают свойством насыщения, которое проявляется в том, что нуклон в ядре взаимодействует лишь с ограниченным числом ближайших к нему соседних нуклонов. Именно поэтому наблюдается линейная зависимость энергий связи ядер от их массовых чисел A. Практически полное насыщение ядерных сил достигается у α-частицы, которая является очень устойчивым образованием.
Ядерные силы зависят от ориентации спинов взаимодействующих нуклонов. Это подтверждается различным характером рассеяния нейтронов молекулами орто- и параводорода. В молекуле ортоводорода спины обоих протонов параллельны друг другу, а в молекуле параводорода они антипараллельны. Опыты показали, что рассеяние нейтронов на параводороде в 30 раз превышает рассеяние на ортоводороде. Ядерные силы не являются центральными.
Взаимодействие между нуклонами возникает в результате испускания и поглощения квантов ядерного поля – π-мезонов. Они определяют ядерное поле по аналогии с электромагнитным полем, которое возникает как следствие обмена фотонами.
Энергия связи
Прочность ядер характеризуется энергией связи. По своей величине энергия связи равна той работе, которую необходимо затратить для разрушения ядра на составляющие его нуклоны без придания им кинетической энергии. Такое же количество энергии освобождается при образовании ядра из нуклонов. Энергия связи ядра является разностью между энергией всех свободных нуклонов, составляющих ядро, и их энергией в ядре.
При образовании ядра происходит уменьшение его массы: масса ядра меньше, чем сумма масс составляющих его нуклонов. Уменьшение массы ядра при его образовании объясняется выделением энергии связи. Количество заключенной в веществе энергии непосредственно связано с его массой соотношением Эйнштейна
E = mc2.
В соответствии с этим соотношением масса и энергия представляют собой разные формы одного и того же явления. Ни масса, ни энергия не исчезают, а при соответствующих условиях переходят из одного вида в другой, т.е. любому изменению массы m системы соответствует эквивалентное изменение ее энергии Е.
Разность между суммой масс свободных нуклонов и массой ядра называется дефектом массы атомного ядра. Если ядро с массой m образовано из Z протонов с массой mp и из (А – Z) нейтронов с массой mn, то дефект массы Δm определяется соотношением
При образовании ядра из частиц последние за счет действия ядерных сил на малых расстояниях устремляются с огромным ускорением друг к другу. Излучаемые при этом гамма-кванты как раз обладают энергией Есв и массой m.
По дефекту массы, с помощью уравнения Эйнштейна (Е = mc2) можно определить энергию, выделившуюся в результате образования ядра, т.е. энергию связи (Еcв):
Еcв = Δmc2
Энергия связи, приходящаяся на один нуклон (т. е. полная энергия связи поделенная на число нуклонов в ядре), называется удельной энергией связи:
Чем больше по абсолютной величине удельная энергия связи, тем сильнее взаимодействие между нуклонами и тем прочнее ядро. Наибольшая энергия связи, приходящаяся на один нуклон, порядка 8,75 МэВ, присуща элементам средней части таблицы Менделеева.
Ядерные спектры
Атомное ядро, как и другие объекты микромира, является квантовой системой. Это означает, что теоретическое описание его характеристик требует привлечения квантовой теории. В квантовой теории описание состояний физических систем основывается на волновых функциях, или амплитудах вероятности ψ(α,t). Квадрат модуля этой функции определяет плотность вероятности обнаружения исследуемой системы в состоянии с характеристикой α – ρ(α,t) = |ψ(α,t)|2. Аргументом волновой функции могут быть, например, координаты частицы.
Квантовый характер атомных ядер проявляется в картинах их спектров возбуждения. Ядра обладают дискретными спектрами возможных энергетических состояний. Таким образом, квантование энергии и ряда других параметров является свойством не только атомов, но и атомных ядер. Состояние атомного ядра с минимальным запасом энергии называется основным, или нормальным, состояния с избыточной энергией (по сравнению с основным состоянием) называются возбужденными.
Спектр состояний ядра 12С
Атомы обычно находятся в возбужденных состояниях примерно 10-8 секунды, а возбужденные атомные ядра избавляются от избытка энергии за гораздо более короткое время — порядка 10-15 - 10-16секунды. Как и атомы, возбужденные ядра освобождаются от избытка энергии, испуская кванты электромагнитного излучения. Эти кванты называются гамма-квантами (или гамма-лучами). Дискретному набору энергетических состояний атомного ядра соответствует дискретный спектр частот излучаемых ими гамма-квантов.
Многие закономерности в ядерных спектрах можно объяснить, если воспользоваться так называемой оболочечной моделью строения атомного ядра. Согласно этой модели, нуклоны в ядре не перемешаны в беспорядке, а, подобно электронам в атоме, располагаются связанными группами, заполняя разрешенные ядерные оболочки. При этом протонные и нейтронные оболочки заполняются независимо друг от друга. Максимальные числа нейтронов: 2, 8, 20, 28, 40, 50, 82, 126 и протонов: 2, 8, 20, 28, 50, 82 в заполненных оболочках получили название магических. Ядра с магическими числами протонов и нейтронов обладают многими замечательными свойствами: повышенным значением удельной энергии связи, меньшей вероятностью вступления в ядерное взаимодействие, устойчивостью по отношению к радиоактивному распаду и т. п. "Дважды магическими" являются, например, ядра4He,16O,28Si. Именно из-за своей особо высокой стабильности эти ядра максимально распространены в природе.
Переход ядра из основного состояния в возбужденное и возвращение его в основное состояние, с точки зрения оболочечной модели, объясняется переходом нуклона с одной оболочки на другую и обратно.
Спонтанные переходы ядер из более высоких возбужденных состояний дискретного спектра ядра в более низкие (в том числе в основное состояние) реализуются, как правило, путем излучения γ-квантов, т.е. за счет электромагнитных взаимодействий. В области больших энергий возбуждения, когда E > Eотд, ширины уровней возбужденного ядра резко возрастают. Дело в том, что в отделении нуклона от ядра главную роль играют ядерные силы - т.е. сильные взаимодействия. Вероятность сильных взаимодействий на порядки выше вероятности электромагнитных, поэтому ширины распада по сильным взаимодействиям велики и уровни ядерных спектров в области E > Eотд перекрываются – спектр ядра становится непрерывным. Главным механизмом распада высоковозбужденных состояний из этой области энергий является испускание нуклонов и кластеров (α-частиц и дейтронов). Излучение γ-квантов в этой области высоких энергий возбуждения E > Eотд происходит с меньшей вероятностью, чем испускание нуклонов. Возбужденное ядро имеет, как правило, несколько путей, или каналов, распада.