Уравнения Максвелла — система дифференциальных уравнений, описывающих электромагнитное поле и его связь сэлектрическими зарядами и токами в вакууме и сплошных средах.
Уравнения, сформулированные Джеймсом Клерком Максвеллом, возникли на основе ряда важных экспериментальных открытий, которые были сделаны в начале XIX века. В 1820 году Ганс Христиан Эрстед обнаружил, что пропускаемый через провод гальванический ток заставляет отклоняться магнитную стрелку компаса. Это открытие привлекло широкое внимание учёных того времени. В том же 1820 году Био и Савар экспериментально нашли выражение для порождаемой током магнитной индукции (закон Био-Савара), и Андре Мари Ампер обнаружил, что взаимодействие на расстоянии возникает также между двумя проводниками, по которым пропускается ток. Ампер ввёл термин «электродинамический» и выдвинул гипотезу, что природный магнетизм связан с существованием в магните круговых токов.
Влияние тока на магнит, обнаруженное Эрстедом, привело Майкла Фарадея к идее о том, что должно существовать обратное влияние магнита на токи. После длительных экспериментов, в 1831 году, Фарадей открыл, что перемещающийся возле проводника магнит порождает в проводнике электрический ток. Это явление было названо электромагнитной индукцией. Фарадей ввёл понятие «поля сил» — некоторой среды, находящейся между зарядамии токами. Его рассуждения носили качественный характер, однако они оказали огромное влияние на исследования Максвелла.
Основу теории Максвелла составляют четыре структурных уравнения, которые записываются в интегральной и дифференциальной формах. В интегральной форме они выражают соотношения для мысленно проведенных в ЭМП контуров и замкнутых поверхностей, а в дифференциальной – показывают, как связаны между собой характеристики ЭМП и плотности электрических зарядов и токов в каждой точке пространства.
Дифференциальная форма
Уравнения Максвелла представляют собой в векторной записи систему из четырех уравнений, сводящуюся в компонентном представлении к восьми (два векторных уравнения содержат по три компоненты каждое плюс два скалярных) линейных дифференциальных уравнений в частных производных 1-го порядка для 12 компонент четырёх векторных функций ( ):
Название | СИ | Примерное словесное выражение | |
Закон Гаусса | Электрический заряд является источником электрической индукции. | ||
Закон Гаусса для магнитного поля | Не существует магнитных зарядов. |
||
Закон индукции Фарадея | Изменение магнитной индукции порождает вихревое электрическое поле. |
||
Теорема о циркуляции магнитного поля | Электрический ток и изменение электрической индукции порождают вихревое магнитное поле |
Жирным шрифтом в дальнейшем обозначаются векторные величины, курсивом — скалярные.
Введённые обозначения:
— плотность стороннего электрического заряда (в единицах СИ — Кл/м³);
— плотность электрического тока (плотность тока проводимости) (в единицах СИ — А/м²); в простейшем случае - случае тока, порождаемого одним типом носителей заряда, она выражается просто как , где — (средняя) скорость движения этих носителей в окрестности данной точки, ρ1 - плотность заряда этого типа носителей (она в общем случае не совпадает с ρ); в общем случае это выражение надо усреднить по разным типам носителей;
— скорость света в вакууме (299 792 458 м/с);
— напряжённость электрического поля (в единицах СИ — В/м);
— напряжённость магнитного поля (в единицах СИ — А/м);
— электрическая индукция (в единицах СИ — Кл/м²);
— магнитная индукция (в единицах СИ — Тл = Вб/м² = кг•с−2•А−1);
— дифференциальный оператор набла, при этом:
означает ротор вектора,
означает дивергенцию вектора.
Интегральная форма
При помощи формул Остроградского-Гаусса и Стокса дифференциальным уравнениям Максвелла можно придать форму интегральных уравнений:
Введённые обозначения:
— двумерная замкнутая в случае теоремы Гаусса поверхность, ограничивающая объём , и открытая поверхность в случае законов Фарадея и Ампера-Максвелла (её границей является замкнутый контур ).
— электрический заряд, заключённый в объёме , ограниченном поверхностью (в единицах СИ — Кл);
При интегрировании по замкнутой поверхности вектор элемента площади направлен из объёма наружу. Ориентация при интегрировании по незамкнутой поверхности определяется направлениемправого винта, «вкручивающегося» при повороте в направлении обхода контурного интеграла по .
Полная система уравнений Максвелла для электромагнитных полей
Данные четыре структурных уравнения дополняются тремя материальными уравнениями, характеризующими свойства среды. Для изотропных несегнетоэлектрических и неферромагнитных сред материальные уравнения имеют вид, соответственно